Chebyshev Inequalities with Law Invariant Deviation Measures
نویسندگان
چکیده
The consistency of law invariant general deviation measures, introduced by Rockafellar et al., with concave ordering has been used to generalize Rao-Blackwell theorem and to develop an approach for reducing minimization of law invariant deviation measures to minimization of the measures on subsets of undominated random variables with respect to concave ordering. This approach has been applied for constructing the Chebyshev and Kolmogorov inequalities with law invariant deviation measures, in particular with mean absolute deviation, lower semideviation and conditional value-at-risk deviation. Also, an advantage of the Kolmogorov inequality with certain deviation measures has been illustrated in estimating the probability of the exchange rate of two currencies to be within specified bounds.
منابع مشابه
Non-commutative Jensen and Chebyshev inequalities for measurable matrix-valued functions and measures
The idea of noncommutative averaging (that is, of a matrix-convex combination of matrixvalued functions) extends quite naturally to the integral of matrix-valued measurable functions with respect to positive matrix-valued measures. In this lecture I will report on collaborative work with F. Zhou, S. Plosker, and M. Kozdron on formulations of some classical integral inequalities (Jensen, Chebysh...
متن کاملMaximum Entropy Principle with General Deviation Measures
An approach to the Shannon and Rényi entropy maximization problems with constraints on the mean and law invariant deviation measure for a random variable has been developed. The approach is based on the representation of law invariant deviation measures through corresponding convex compact sets of nonnegative concave functions. A solution to the problem has been shown to have an alpha-concave d...
متن کاملInterval-valued Chebyshev, Hölder and Minkowski inequalities based on g-integrals
A natural generalization of (classical) measures are monotone set valued functions, the so called non-additive measures. Further generalization of measures are intervalvalued measures and interval-valued non-additive measures. Since interval-valued ⊕-measures, as a special case of intervalvalued non-additive measures, have been extensively applied in the mathematical representation of the vario...
متن کاملSOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...
متن کاملFourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We...
متن کامل